ridgeplot.colors
This module collects functions for manipulating color legends for matplotlib plots and a collections of color palettes.
ColorEncoder
color-encoding a categoric vector
Example
>>> from ridgeplot.colors import ColorEncoder, ColorPalette
>>> categorical_vector = ['group a','group b','group c','group a']
>>> colors = ColorPalette["okabeito"]
>>> ce = ColorEncoder()
>>> ce.fit(categorical_vector, colors)
>>> ce.encoder
OrderedDict([('group a', '#E69F00'),
('group b', '#56B4E9'),
('group c', '#009E73')])
>>> ce.transform(["group b", "group c", "group a"])
['#56B4E9', '#009E73', '#E69F00']
or
>>> ce = ColorEncoder()
>>> ce.fit_transform(categorical_vector, colors)
['#E69F00', '#56B4E9', '#009E73', '#E69F00']
access color encoder
>>> ce.encoder
OrderedDict([('group a', '#E69F00'),
('group b', '#56B4E9'),
('group c', '#009E73')])
Source code in src/ridgeplot/colors.py
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
|
fit(categories, colors=ColorPalette['invitae'])
mapping colors to the unique categories in the input list basically fill the encoder dictionary
Example
>>> categorical_vector = ['group a','group b','group c','group a']
>>> colors = ColorPalette["okabeito"]
>>> ce = ColorEncoder()
>>> ce.fit(categroical_vector, colors)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
categories
|
List[str]
|
list of input values (i.e. labels of the samples), can be duplicated |
required |
colors
|
List[str]
|
list of colors, intentionally not checked for duplication |
ColorPalette['invitae']
|
Returns: NoneType
Source code in src/ridgeplot/colors.py
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
|
fit_transform(categories, colors=ColorPalette['invitae'])
first map the color to the categories, and then return the corresponding color for each category in the input list
Example
>>> categorical_vector = ["group1", "group2", "group1"]
>>> colors = ["salmon","gold"]
>>> ce = ColorEncoder()
>>> ce.fit_transform(categorical_vector, colors)
['salmon', 'gold', 'salmon']
Parameters:
Name | Type | Description | Default |
---|---|---|---|
categories
|
List[str]
|
list of input values (i.e. labels of the samples), can be duplicated |
required |
colors
|
List[str]
|
list of colors to be assigned to the categories |
ColorPalette['invitae']
|
Returns: list of colors corresponding to the input
Source code in src/ridgeplot/colors.py
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
|
show_legend(ax, sort=False, **kwargs)
Adding matplotlib legend describing the color encoder to a matplotlib ax object
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ax
|
Axes
|
matplotlib ax object |
required |
sort
|
bool
|
sort the legend by the category |
False
|
**kwargs
|
Dict[str, Any]
|
keyword arguments for matplotlib.pyplot.legend |
{}
|
Returns:
Type | Description |
---|---|
Legend
|
the matplotlib legend object |
Source code in src/ridgeplot/colors.py
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
|
transform(categories)
mapping color to the a list of category in the input list
Example
>>> categorical_vector = ['group a','group b','group c','group a']
>>> colors = ColorPalette["okabeito"]
>>> ce = color_encoder()
>>> ce.fit(categroical_vector, colors)
>>> new_categorical_vector = ["group b", "group c"]
>>> ce.transform(new_categorical_vector)
['#56B4E9', '#009E73']
Parameters:
Name | Type | Description | Default |
---|---|---|---|
categories
|
List[str]
|
list of input values (i.e. labels of the samples), can be duplicated |
required |
Returns: list of colors for the input list according to the fitted color encoder
Source code in src/ridgeplot/colors.py
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
|
check_color_vector_size(categorical_vector, color_vector)
asserting the number of different categories in the input list is less than the given color list
Parameters:
Name | Type | Description | Default |
---|---|---|---|
categorical_vector
|
List[str]
|
list of input values (i.e. labels of the samples), can be duplicated |
required |
color_vector
|
List[str]
|
list of colors, intentionally not checked for duplication |
required |
Returns:
Type | Description |
---|---|
List[str]
|
list of unique categories in the input list |
Source code in src/ridgeplot/colors.py
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
|
get_cmap_color_values(cmap_name)
Get color values for the min and max color in a color map
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cmap_name
|
str
|
color map name (e.g. viridis) |
required |
Returns:
Type | Description |
---|---|
Tuple[str, str]
|
hex code for the min and max color |
Source code in src/ridgeplot/colors.py
279 280 281 282 283 284 285 286 287 288 289 290 |
|
ordered_set(xs)
this is a simple function to make a set according to the order of the input list
because python set is unordered, see: https://stackoverflow.com/questions/9792664/converting-a-list-to-a-set-changes-element-order
Parameters:
Name | Type | Description | Default |
---|---|---|---|
xs
|
List[str]
|
list of input values |
required |
Returns:
Type | Description |
---|---|
List[str]
|
a list of unique input values in the order of how they arranged in the input list |
Source code in src/ridgeplot/colors.py
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
|